

BPC-iMX6Se-01 Industrial Computer User Guide

Version: V1.0 (2023-05)

Complied by: Polyhex Technology Company Limited (http://www.polyhex.net/)

BPC-iMX6Se-01 Industrial Computer is designed with security in mind. Based on the NXP i.MX 6 series processor, which is composed of a EMB-iMX6Se-01 (main board), and a steel and aluminum enclosure. It combines various types of harsh environment resistance features, including ruggedness, dustproof, anti-vibration, shock resistance, wide temperature, portability and other indicators; and also provides multi-core solutions based on 6DualLite, 6Quad, 6Dual and 6Solo, widely used in commercial and industrial.

Figure 1 BPC-iMX6Se-01

REVISION HISTORY				
Rev. Date Description				
1.0 2023.05.26 First edition				

Index

Chapter 1 Security	5
1.1. Safety Precaution	5
1.2. Safety Instruction	5
1.3. Declaration of Compliance	6
1.4. Technical Support	7
Chapter 2 BPC-iMX6Se-01 Industrial Computer Introduction	8
2.1. Overview	9
2.2. Composition12	2
2.3. External Interface	3
2.3.1. Power Interface1	3
2.3.2. USB Interface1	3
2.3.3. Ethernet Interface14	4
2.3.4. Display Interface1	5
2.3.5. RS485/RS232/RS422/CAN Interface	8
2.3.6. GPIO	0
2.3.7. LED & Key	0
2.3.8. Slot2	1
2.4. Packing List	2
Chapter 3 Getting started	3
3.1. Installation	3
3.2. Power on	4
Chapter 4 Software Application Examples2	5
4.1. Usage of Ethernet	5
4.2. Usage of WiFi	6
4.3. Usage of USB	8
4.4. Usage of 4G Module	9
4.5. Verification of RS485/RS232/RS422/CAN	1
4.5.1. 4 x RS232	1

4.5.2. RS485/RS232/RS422/2 x CAN (RS485 by default)	33
4.6. Verification of GPIO	39
4.7. Verification of RTC	

Chapter 1 Security

1.1. Safety Precaution

The following messages inform how to make each cable connection. In most cases, you will simply need to connect a standard cable.

Table 1 Terms and conventions

Symbol	Meaning
Warning!	Always disconnect the power cord from the chassis whenever there is no workload required on it. Do not connect the power cable while the power is on. A sudden rush of power can damage sensitive electronic components. Only experienced electricians should open the chassis.
Caution!	Always ground yourself to remove any static electric charge before touching <i>BPC-iMX6Se-01</i> . Modern electronic devices are very sensitive to electric charges. Use a grounding wrist strap at all times. Place all electronic components on a static-dissipative surface or in a static-shielded bag.

1.2. Safety Instruction

To avoid malfunction or damage to this product please observe the following:

1. Disconnect the device from the DC power supply before cleaning. Use a damp cloth. Do

not use liquid detergents or spray-on detergents.

2. Keep the device away from moisture.

3. During installation, set the device down on a reliable surface. Drops and bumps will lead to damage.

4. Before connecting the power supply, ensure that the voltage is in the required range, and the way of wiring is correct.

5. Carefully put the power cable in place to avoid stepping on it.

6. If the device is not used for a long time, power it off to avoid damage caused by sudden

overvoltage.

7. Do not spill liquid into the venting holes of the enclosure, as this could cause fire or electric shock.

- 8. For safety reasons, the device can only be disassembled by professional personnel.
- 9. If one of the following situations occur, get the equipment checked by service personnel:
 - The power cord or plug is damaged.
 - Liquid has penetrated into the equipment.
 - The equipment has been exposed to moisture.
 - The equipment does not work well, or you cannot get it to work according to the user's manual.
 - The equipment has been dropped and damaged.
 - The equipment has obvious signs of breakage.

10. Do not place the device in a place where the ambient temperature is below -20°C (-4°F) or above 70°C (158°F). This will damage the machine. It needs to be kept in an environment at controlled temperature.

11. Due to the sensitive nature of the equipment, it must be stored in a restricted access location, only accessible by qualified engineer.

DISCLAIMER: Polyhex disclaims all responsibility for the accuracy of any statement of this instructional document.

1.3. Declaration of Compliance

CE: This equipment has passed CE certified.

FCC: This equipment has passed FCC certified.

RoHS: This equipment is manufactured in compliance with RoHS regulations.

REACH: This equipment is manufactured in compliance with REACH regulations.

1.4. Technical Support

- 1. Visit Polyhex website http://www.polyhex.net/ where you can find the latest information about the product.
- 2. Contact your distributor, sales representative or Polyhex's customer service center for technical support if you need additional assistance. Please have the following info ready before you call:
 - Product name
 - Description of your peripheral attachments
 - Description of your software(operating system, version, application software, etc.)
 - A complete description of the problem
 - The exact wording of any error messages

Email: info@polyhex.net

Chapter 2 BPC-iMX6Se-01 Industrial Computer Introduction

BPC-iMX6Se-01 Industrial Computer is a small embedded PC based on the NXP i.MX 6 series processor. With compact appearance and rich I/Os, it is mostly used in digital signage, kiosk, network security, IoT gateway and other fields.

Main features:

- Cortex-A9-based solution
- i.MX 6Quad family
 - a quad-core, up to 1.2 GHz with 1 MB of L2 cache
 - Support hardware accelerated graphics, 64-bit DDR3 or 2-channel, 32-bit LPDDR2
 - Integrated FlexCAN and MLB busses, PCI Express® and SATA2 provide excellent connectivity
 - Integration of dual lane MIPI display ports, MIPI camera port and HDMI v1.4
- i.MX 6Dual family
 - a dual-core, up to 1.2 GHz with 1 MB of L2 cache
 - Support hardware accelerated graphics, 64-bit DDR3 or 2-channel, 32-bit LPDDR2
 - Leveraging the same integration of the i.MX 6Quad family
- i.MX 6DualLite family
 - a dual-core, up to 1.0 GHz with 512 KB of L2 cache
 - Support 64-bit DDR3 or 2-channel, 32-bit LPDDR2
 - Integrated FlexCAN and MLB busses, PCI Express, LVDS
 - Support MIPI cameras and displays as well as HDMI v1.4
- i.MX 6Solo family
 - a single core, up to 1.0 GHz with 512 KB of L2 cache
 - Support 32-bit DDR3/LPDDR2
 - Integrated LVDS, MIPI display, MIPI camera port, HDMI v1.4, FlexCAN and MLB
- Support Yocto 2.5.2, Android 9.0, Ubuntu 16.04

2.1. Overview

4×RS232

Figure 3 IO of BPC-iMX6Se-01

BPC-iMX6Se-01 Industrial Computer uses EMB-iMX6Se-01 Board as the main board, which supports Gigabit Ethernet, wifi and other functions, with dustproof, shock and vibration resistance, etc.. The data specifications are as follows.

Table 2 BPC-iMX6Se-01 specification

System			
Motherboard	EMB-iMX6Se-01		
Model	BPC-iMX6Se-01		
	(1) NXP i.MX 6DualLite 1.0GHz (Commercial)		
	(2) NXP i.MX 6Quad 1.0GHz (Extended Commercial optional)		
CPU	(3) NXP i.MX 6Solo (Industrial grade optional)		
	(4) NXP i.MX 6Dual (Industrial grade optional)		
Memory	Onboard 1GB DDR3 (2GB optional)		
Storage	Onboard 8GB eMMC (16GB/32GB/64GB/128GB/256GB optional)		
OS	Yocto 2.5.2, Android 9.0, Ubuntu 16.04		
Communication			
Gigabit Network	1 x 10Mbps/100Mbps/1000Mbps RJ45 network port		
	External Wi-Fi SMA antenna interface,		
	(1) 1 x 2.4GHz WiFi, support IEEE 802.11 b/g		
WI-FI & Bluelooth	(2) Option: 1 x 2.4GHz WiFi and BT V2.1/ V3.0/ V4.0, support IEEE		
	802.11 b/g/n		
Video			
Diaplay	(1) 1 x VGA output, connector is DB-15		
Display	(2) 1 x HDMI v1.4 output, the connector is Type A HDMI female		
External I/O Interface			
DC Block 1 x DC socket, supports 5.5mm x 2.1mm plug			
	(1) 1 x Micro USB OTG		
USB	(2) 2 x USB 2.0 Host, the connector is double layer Type-A interface		
	(3) 2 x USB 2.0 Host, the connector is Type-A interface		
	(1) 4 x RS232		
UARI	(2) 1 x RS485/RS232/RS422/2 x CAN(default RS485)		
GPIO	1 x GPIO		

Slot	(1) 1 x SIM slot		
3101	(2) 1 x Micro SD slot		
	(1) 1 x System status indicator		
LED & Key	(2) 1 x Power status indicator		
	(3) 1 x ON/OFF key		
Power Supply			
Power Input	DC 12V/2A		
Mechanical & Environmental			
Mechanical & Envi	ronmental		
Mechanical & Envi Enclosure Material	ronmental Steel and aluminum alloy		
Mechanical & Envi Enclosure Material Dimension	ronmental Steel and aluminum alloy		
Mechanical & Envi Enclosure Material Dimension (W x D x H)	ronmental Steel and aluminum alloy 169.42mm x 124mm x 38.9mm		
Mechanical & Envi Enclosure Material Dimension (W x D x H) Weight	ronmental Steel and aluminum alloy 169.42mm x 124mm x 38.9mm 780g		
Mechanical & Envi Enclosure Material Dimension (W x D x H) Weight Heat Dissipation	ronmentalSteel and aluminum alloy169.42mm x 124mm x 38.9mm780gNo fan, heat dissipation through the enclosure		

2.2. Composition

BPC-iMX6Se-01 Industrial Computer assembly consists of these main components: EMB-iMX6Se-01 board, enclosure and antenna.

Figure 4 EMB-iMX6Se-01

Figure 5 Enclosure and antenna

2.3. External Interface

2.3.1. Power Interface

BPC-iMX6Se-01 Industrial Computer provides 1 power connector (DC socket), with default DC 12V/2A power input. As shown in the figure below.

Figure 6 DC-IN Interface

2.3.2. USB Interface

BPC-iMX6Se-01 Industrial Computer has two USB controllers and PHY, supports USB 2.0. Two USB 2.0 interfaces with dual-layer Type-A connector and a Micro USB OTG interface, and another two USB 2.0 interfaces with Type-A connector. As shown in the figures below.

Figure 7 Micro USB OTG and USB 2.0

Figure 8 USB 2.0

2.3.3. Ethernet Interface

BPC-iMX6Se-01 Industrial Computer provides an independent MAC RJ45 Ethernet port (Network port: LAN), connect Industrial Computer to network through the network cable of RJ45 connector. A set of status indicators below the interface displays the status signal, the green one is a Link connection indicator, and the other yellow is an Active signal transmission indicator.

Figure 9 Ethernet Interface

Table 3 Ethernet port status

LED	Color	Description
Link	Green	Light, the network cable is plugged in, network connection status is good

Active Yellow Blinking, network data is being transmitted

2.3.4. Display Interface

- One is an HDMI interface, and the connector is an A-type HDMI female socket, which is used to connect a monitor, TV or projector. HDMI resolution is supported up to 1366x768. Audio supports 32 channel audio, output supports 1 S/PDIF audio and eARC input support.
- One is a VGA interface with DB-15 connector for connecting a monitor, KVM, digital signage, or projector. Supports VGA resolution up to 1920x1080.

BPC-iMX6Se-01 Industrial Computer supports VGA and HDMI dual screen display by default. The device is connected to the corresponding display with an HDMI cable and a VGA cable, and the system interface can be seen after power on.

Figure 10 Display Interface

The HDMI pin sequence is as shown in the figure:

The HDMI interface is defined as follows:

Table 4 Pin definition of HDMI interface

Pin	Definition	Pin	Definition
1	HDMI_D2P	2	GND
3	HDMI_D2M	4	HDMI_D1P
5	GND	6	HDMI_D1M
7	HDMI_D0P	8	GND
9	HDMI_D0M	10	HDMI_CLKP
11	GND	12	HDMI_CLKM

13	HDMI_CEC_OUT	14	NC
15	HDMI_DDC_CLK_OUT	16	HDMI_DDC_DAT_OUT
17	GND	18	HDMI_5V
19	HPD_OUT	20	GND
21	GND	22	GND
23	GND		

The VGA pin sequence is as shown in the figure:

The VGA interface is defined as follows:

Table 5 Pin definition of VGA interface

Pin	Definition	Description
1	VGA_RED	Red component signal
2	VGA_GRN	Green component signal
3	VGA_BLU	Blue component signal
4	NC	Not used
5	GND	GND
6	GND	GND
7	GND	GND
8	GND	GND
9	VGA_5V	5V input
10	GND	GND
11	NC	Not used
12	VGA_I2C_SDA	Serial data signal

13	VGA_HSYNC	Horizontal synchronization (line synchronization)
14	VGA_VSYNC	Vertical synchronization (field synchronization)
15	VGA_I2C_SCL	Serial clock signal

2.3.5. RS485/RS232/RS422/CAN Interface

NOTE

The default configuration is an RS485 interface. RS485, RS232, RS422 and CAN on the same socket, only one can be used at the same time.

BPC-iMX6Se-01 Industrial Computer has 4 x RS232 interfaces (Port: COM1~COM4), and 1 x

RS485/RS232/RS422/2 x CAN interface. As shown in the figure below:

Figure 13 URAT Interface

The RS485 /RS232/ RS422/ 2 x CAN pin sequence is as shown in the figure:

RS485/RS232/RS422/2 x CAN

Figure 14

Table 6 Pin definition of RS485/ RS232/ RS422/ 2 x CAN (RS485 by default)

Pin	RS485	RS232	RS422	CAN	Device node
1	GND	GND	GND	GND	/dev/ttymxc4

2	RS485_DATA-	NC	RS422_TX-	CAN1_H
3	RS485_DATA+	RS232_RXD	RS422_TX+	CAN1_L
4	GND	GND	GND	GND
5	NC	RS232_TXD	RS422_RX+	CAN2_H
6	NC	NC	RS422_RX-	CAN2_L

The 4 x RS232 pin sequence is as shown in the figure:

Figure 15

Table 7 Device nodes of COM1-4(RS232)

Function Name	IO Name	Description	Device node
COM1	RS232_RXD1	RS232 receiver	/dev/ttymxc0
	RS232_TXD1	RS232 sender	
COM2	RS232_RXD2	RS232 receiver	/dev/ttymxc1
	RS232_TXD2	RS232 sender	
COM3	RS232_RXD3	RS232 receiver	/dev/ttymxc2
	RS232_TXD3	RS232 sender	
COM4	RS232_RXD4	RS232 receiver	/dev/ttymxc3
	RS232_TXD4	RS232 sender	

The 4 x RS232 interface is defined as follows:

Table 8 Pin definition of COM1-4(RS232)

Pin	Definition	Pin	Definition
1	NC	2	RS232_RXD
3	RS232_TXD	4	NC

5	GND	6	NC
7	NC	8	NC
9	NC		

2.3.6. GPIO

BPC-iMX6Se-01 Industrial Computer provides a GPIO interface, as shown below:

Figure 16 GPIO Interface

The GPIO interface is defined as follows:

Table 9 Pin definition of GPIO

Pin	Definition	Pin	Definition
V	VDD 3.3V	0	SIO_GP70
1	SIO_GP71	2	SIO_GP72
3	SIO_GP73	4	SIO_GP74
5	SIO_GP75	6	SIO_GP76
7	SIO_GP77	G	SIO_GND

2.3.7. LED & Key

BPC-iMX6Se-01 Industrial Computer provides two LED and a POWER key, as shown in the figure below.

Figure 17 LED and Key

Table 10 LED & Key description

LED & Key	Status	Description		
HDD	Lighting	Device works normally		
	off	Device works abnormally		
PWD	Lighting	Power is on		
	off	Power is off		
POWER key	Short press	Screen display shutdown menu, with options for shutdown, hibernation and other functions		
	Long press for 8 seconds	Force device shutdown		
	Long press for 15 seconds	Force device restart		

2.3.8. Slot

BPC-iMX6Se-01 Industrial Computer provides two card slots, one is standard SIM card slot and one is Micro SD card slot, as shown below:

Figure 18 SIM and Micro SD card slot

When inserting the SIM / Micro SD card into the corresponding slot, you need to pay attention to the insertion and removal direction (the direction position has been marked on the device).

2.4. Packing List

- ✓ 1 x WiFi external antenna
- ✓ 4 x M3-5 Black screw
- ✓ 2 x Wall bracket
- ✓ 1 x BPC-iMX6Se-01 box

Chapter 3 Getting started

3.1. Installation

After receiving the product, install the accessories as follows.

- 1. If you need to hang the device on the wall, use 4 black screws to fix 2 wall brackets on the enclosure, and then fix the device on the wall.
- 2. Install the WiFi antenna to the WiFi antenna connector as shown in the following figure.

Figure 19 WiFi antenna

 Connect the power adapter to the DC-IN connector of enclosure. When the HDD and PWD LED are on, it proves that the Industrial Computer is powered on.

Figure 20 Power adapter

3.2. Power on

Note: BPC-iMX6Se-01 Industrial Computer factory default for eMCC boot and Ubuntu 16.04. If you need to change to other boot modes or OS, please contact our engineer for modification before leaving the factory, and do not disassemble the machine by yourself.

Chapter 4 Software Application Examples

4.1. Usage of Ethernet

Network port (LAN), port number: eth0

1. Open a Terminal and type the command to query the network port.

ip a

1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group defaul t qlen 1000 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00 inet 127.0.0.1/8 scope host lo
 valid_lft forever preferred_lft forever inet6 ::1/128 scope host
 valid_lft forever preferred_lft forever 2: can0: <NOARP,ECHO> mtu 16 qdisc noop state DOWN group default qlen 10 link/can 3: can1: <NOARP,ECHO> mtu 16 qdisc noop state DOWN group default qlen 10 link/can 4: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP gr oup default qlen 1000 link/ether 10:07:23:6e:02:eb brd ff:ff:ff:ff:ff:ff inet6 240e:36d:d82:3900:5c06:d6b7:d784:1575/64 scope global temporary dynami valid_lft 216745sec preferred_lft 85468sec inet6 240e:36d:d82:3900:80a7:b8ba:6b91:2fb6/64 scope global mngtmpaddr nopre fixroute dynamic valid_lft 216745sec preferred_lft 130345sec inet6 240e:36d:d82:3900:1207:23ff:fe6e:2eb/64 scope global mngtmpaddr dynami valid_lft 216745sec preferred_lft 130345sec inet6 fe80::1207:23ff:fe6e:2eb/64 scope link valid_lft forever preferred_lft forever 5: sit0@NONE: <NOARP> mtu 1480 qdisc noop state DOWN group default qlen 1000 link/sit 0.0.0.0 brd 0.0.0.0 6: wlan0: <NO-CARRIER,BROADCAST,MULTICAST,UP> mtu 1500 qdisc mq state DOWN group default qlen 1000
 link/ether 0c:c6:55:75:5d:39 brd ff:ff:ff:ff:ff:ff root@polyhex:~#

2. Apply ping command.

ping 192.168.1.1

root@polyhex	:~# ping 192.1	68.1.1
PING 192.168	.1.1 (192.168.	 1.1) 56(84) bytes of data.
64 bytes fro	m 192.168.1.1:	icmp_seq=1 ttl=64 time=0.664 ms
64 bytes fro	m 192.168.1.1:	icmp_seq=2 ttl=64 time=0.610 ms
64 bytes fro	m 192.168.1.1:	icmp seq=3 ttl=64 time=0.585 ms
64 bytes fro	m 192.168.1.1:	icmp seq=4 ttl=64 time=0.562 ms
64 bytes fro	m 192.168.1.1:	icmp seq=5 ttl=64 time=0.436 ms
64 bytes fro	m 192.168.1.1:	icmp seq=6 ttl=64 time=0.582 ms
64 bytes fro	m 192.168.1.1:	icmp_seq=7_ttl=64_time=0.573_ms
64 bytes fro	m 192.168.1.1:	icmp seq=8 ttl=64 time=0.551 ms
64 bytes fro	m 192.168.1.1:	icmp_seq=9 ttl=64 time=0.424 ms
64 bytes fro	m 192.168.1.1:	icmp seq=10 ttl=64 time=0.527 ms
64 bytes fro	m 192.168.1.1:	<pre>icmp seq=11 ttl=64 time=0.441 ms</pre>
64 bytes fro	m 192.168.1.1:	icmp seq=12 ttl=64 time=0.392 ms
64 bytes fro	m 192.168.1.1:	icmp seq=13 ttl=64 time=0.534 ms
64 bytes fro	m 192.168.1.1:	icmp seq=14 ttl=64 time=0.560 ms
64 bytes fro	m 192.168.1.1:	icmp seq=15 ttl=64 time=0.593 ms
64 bytes fro	m 192.168.1.1:	icmp seq=16 ttl=64 time=0.455 ms
64 bytes fro	m 192.168.1.1:	icmp seq=17 ttl=64 time=0.426 ms
64 bytes fro	m 192.168.1.1:	icmp seq=18 ttl=64 time=0.644 ms
64 bytes fro	m 192.168.1.1:	<pre>icmp_seq=19 ttl=64 time=0.544 ms</pre>
64 bytes fro	m 192.168.1.1:	icmp_seq=20 ttl=64 time=0.593 ms
64 bytes fro	m 192.168.1.1:	icmp seg=21 ttl=64 time=0.424 ms

3. Query the speed of the network port.

ethtool eth0

```
oot@polyhex:~# sudo ethtool eth0
Settings for eth0:
Supported ports: [ TP MII ]
Supported link modes: 10b
                                            10baseT/Half 10baseT/Full
100baseT/Half 100baseT/Full
1000baseT/Full
          Supported pause frame use: Symmetric
Supports auto-negotiation: Yes
           Advertised link modes: 10baseT/Half 10baseT/Full
100baseT/Half 100baseT/Full
                                             1000baseT/Full
           Advertised pause frame use: Symmetric
           Advertised auto-negotiation: Yes
                                                               10baseT/Half 10baseT/Full
100baseT/Half 100baseT/Full
           Link partner advertised link modes:
                                                               1000baseT/Full
          Link partner advertised pause frame use: Symmetric
Link partner advertised auto-negotiation: Yes
           Speed: 1000Mb/s
Duplex: Full
           Port: MII
           PHYAD: 1
           Transceiver: external
           Auto-negotiation: on
           Supports Wake-on: g
           Wake-on: d
           Link detected: yes
root@polyhex:~#
```

4.2. Usage of WiFi

• unplug the network cable, and connect the device to WiFi (polyhex_mi) via the command;

or connect to available WiFi by clicking the network icon in the lower left corner of the

display.

nmcli r wifi on	#Enable WiFi	
nmcli dev wifi	#Find available WiFi	
nmcli dev wifi co	onnect "SSID" password "PASSWORD" ifname wlan0	#Connect to the
specified WiFi		
root@polyhex[16:22: s nmcli r wifi on	:28]:~	

SSID	MODE	CHAN	RATE	SIGNAL	BARS	SECURITY
polyhex mil	Infra		54 Mbit/s	75		WPA2
tsc wh	Infra		54 Mbit/s	69		WPA1 WPA2
	Infra	11	54 Mbit/s	65		WPA2
tsc	Infra	11	54 Mbit/s	59		WPA2
		11				WPA2
DIRECT-0b-HP M132 LaserJet				42		WPA2
						WPA1 WPA2
polyhex-3	Infra	11	54 Mbit/s	25		WPA1 WPA2
HUISHI-503	Infra	1	54 Mbit/s	19		WPA1 WPA2
???? Inf	ra 13	54	Mbit/s 19		WPA	1 WPA2
ChinaNet-ASgW	Infra		54 Mbit/s	15		WPA1 WPA2
ZY WH 7A31 2	Infra	11	54 Mbit/s	15		WPA1 WPA2
Ns	Infra	11	54 Mbit/s	15		WPA1 WPA2
htsc-wuhan	Infra		54 Mbit/s	12		WPA1 WPA2
ot@polyhex[16:23:04]:~						
nmcli dev wifi connect "noly	hey mil	" nass	word "hohai	2021" if	name w	lan0

• Apply ping command to check the network connection status.

ping 192.168.1.1

гос	ot@poly	/hex[]	L6:24:31]:~					
\$ 1	bing 19	92.168	3.1.1					
PI	VG 192.	168.1	1.1 (192.168.)	L.1) 56(84) b	bytes o	f data.		
64	bytes	from	192.168.1.1:	icmp_seq=1 t	ttl=63	time=16.8	ms	
64	bytes	from	192.168.1.1:	icmp_seq=2 t	ttl=63	time=3.78	ms	
64	bytes	from	192.168.1.1:	icmp_seq=3 t	ttl=63	time=4.83	ms	
64	bytes	from	192.168.1.1:	icmp_seq=4 t	ttl=63	time=18.2	ms	
64	bytes	from	192.168.1.1:	icmp_seq=5 t	ttl=63	time=3.71	ms	
64	bytes	from	192.168.1.1:	icmp_seq=6 t	ttl=63	time=6.38	ms	
64	bytes	from	192.168.1.1:	icmp_seq=7 t	ttl=63	time=3.43	ms	
64	bytes	from	192.168.1.1:	icmp_seq=8 t	ttl=63	time=4.61	ms	
64	bytes	from	192.168.1.1:	icmp_seq=9 t	ttl=63	time=3.84	ms	
64	bytes	from	192.168.1.1:	icmp_seq=10	ttl=63	time=20.9	ms	
64	bytes	from	192.168.1.1:	icmp_seq=11	ttl=63	time=5.82	2 ms	
64	bytes	from	192.168.1.1:	icmp_seq=12	ttl=63	time=4.23	3 ms	
64	bytes	from	192.168.1.1:	icmp_seq=13	ttl=63	time=2.98	3 ms	
64	bytes	from	192.168.1.1:	<pre>icmp_seq=14</pre>	ttl=63	time=6.25	ms	
64	bytes	from	192.168.1.1:	icmp_seq=15	ttl=63	time=3.26	5 ms	
64	bytes	from	192.168.1.1:	icmp_seq=16	ttl=63	time=3.61	ms	

4.3. Usage of USB

1. Access the U disk in FAT32 format, the system will automatically mount it to the /mnt

path.

df -h					
root@polyhex[03	:00:04]:~			
\$ df -h					
Filesystem	Size	Used	Avail	Use%	Mounted on
/dev/root	14G	2.7G	11G	21%	
devtmpfs	499M	Θ	499M	0%	/dev
tmpfs	500M	484K	499M	1%	/dev/shm
tmpfs	500M	14M	486M	3%	/run
tmpfs	5.0M	4.0K	5.0M	1%	/run/lock
tmpfs	500M	Θ	500M	0%	/sys/fs/cgroup
/dev/mmcblk2p1	490M	7.8M	482M	2%	/boot
tmpfs	100M	44K	100M	1%	/run/user/0
/dev/sda1	500M	32M	469M	7%	/media/root/68BA-C562
/dev/sda2	29G	3.4G	25G	13%	/media/root/79de8ff0-265b-451f-be52-87356c
5f68c0					
root@polyhex[03	:00:13]:~			

- If the U disk is not mounted, you can mount the U disk with the following command:
 - Query the U disk letter:

fdisk -l

root@polvhex[02:54:25]:~	
\$ fdisk -l	
Disk /dev/ram0: 64 MiB, 67108864 bytes, 131072 sectors Units: sectors of 1 * 512 = 512 bytes	
Sector size (logical/physical): 512 bytes / 4096 bytes I/O size (minimum/optimal): 4096 bytes / 4096 bytes	
Disk /dev/ram1: 64 MiB, 67108864 bytes, 131072 sectors Units: sectors of 1 * 512 = 512 bytes	
Sector size (logical/physical): 512 bytes / 4096 bytes I/O size (minimum/optimal): 4096 bytes / 4096 bytes	
Disk /dev/ram2: 64 MiB, 67108864 bytes, 131072 sectors Units: sectors of 1 * 512 = 512 bytes	
Sector size (logical/physical): 512 bytes / 4096 bytes I/O size (minimum/optimal): 4096 bytes / 4096 bytes	
Disk /dev/ram3: 64 MiB, 671088664 bytes, 131072 sectors Units: sectors of 1 * 512 = 512 bytes	
Sector size (logical/physical): 512 bytes / 4096 bytes	

Disk /dev	/mmcbl	<pre>k2boot1:</pre>	4 MiB, 4	194304 by	tes, 8	192	sectors	
Units: se	ctors (of 1 * 5	12 = 512	bytes				
Sector si	ze (lo	gical/phy	ysical):	512 bytes	/ 512	by	tes	
I/O size	(minim	um/optima	al): 512	bytes / 5	12 byte	es		
Disk /dev	/mmcbl	<pre>k2boot0:</pre>	4 MiB, 4	194304 by	tes, 83	192	sectors	
Units: se	ctors (of 1 * 5	12 = 512	bytes				
Sector si	ze (lo	gical/phy	vsical):	512 bytes	/ 512	by	tes	
I/O size	(minim	um/optima	al): 512	bytes / 5	12 byte	es		
Disk /dev	/sda:	29.7 GiB	3191498	3424 byte	5, 623	339	52 sectors	
Units: se	ctors (of $1 * 5$	12 = 512	bytes				
Sector si	ze (lo	gical/phy	ysical):	512 bytes	/ 512	by:	tes	
I/O size	(minimu	um/optima	al): 512	bytes / 5	12 byte	es		
Disklabel	type:	dos						
Disk iden	tifier	0x000dl	ba0b					
Device	Boot	Start	End	Sectors	Size	Id	Type	
/dev/sda1		20480	1044479	1024000	500M	C	W95 FAT32	(LBA)
/dev/sda2		1228800	62333951	61105152	29.1G	83	Linux	
reatingly	hov [03	.00.041						

Mounting the U disk:

mount /dev/sda1 /mnt

root@polyhex[03	:00:13]:~			
<pre>\$ mount /dev/sd</pre>	al /mn	t			
root@polyhex[03	:01:36]:~			
\$ df -h					
Filesystem	Size	Used	Avail	Use%	Mounted on
/dev/root	14G	2.7G	11G	21%	/
devtmpfs	499M	Θ	499M	0%	/dev
tmpfs	500M	484K	499M	1%	/dev/shm
tmpfs	500M	14M	486M	3%	/run
tmpfs	5.0M	4.0K	5.0M	1%	/run/lock
tmpfs	500M	Θ	500M	0%	/sys/fs/cgroup
/dev/mmcblk2p1	490M	7.8M	482M	2%	/boot
tmpfs	100M	44K	100M	1%	/run/user/0
/dev/sdal	500M	32M	469M	7%	/mnt
/dev/sda2	29G	3.4G	25G	13%	/media/root/79de8ff0-265b-451f-be52-87356c
5f68c0					
root@polvhex[03	:01:44	1:~			

2. Enter the U disk directory:

cd /mnt	
<pre>root@polyhex[03:01:44]:~ \$ cd /mnt root@polyhex[03:02:15]:/mnt \$ ls</pre>	
Image System Volume Information imx8mp-debix-4g-board.dtb imx8mp-debix-core-HC050IG40029-D58V.C.dtb	

4.4. Usage of 4G Module

Connect the 4G module, insert the SIM card, and connect the 4G antenna.

The 4G module is identified as /dev/ttyUSB2 under the system, and the following verification

29 / 40

www.polyhex.net

is done in a scenario where the other network is disconnected.

• Query 4G module command

cd /etc/ppp/peers

./quectel-pppd.sh

ifconfig

root@polyhex:/etc/ppp/peers# ifconfig eth0 Link encap:Ethernet HWaddr 72:67:d7:f3:8d:7f UP BROADCAST MULTICAST MTU:1500 Metric:1 RX packets:0 errors:0 dropped:0 overruns:0 frame:0 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:1000 RX bytes:0 (0.0 B) TX bytes:0 (0.0 B) lo Link encap:Local Loopback inet addr:127.0.0.1 Mask:255.0.0.0 inet6 addr: ::1/128 Scope:Host UP LOOPBACK RUNNING MTU:65536 Metric:1 RX packets:96 errors:0 dropped:0 overruns:0 frame:0 TX packets:96 errors:0 dropped:0 overruns:0 carrier:0

- collisions:0 txqueuelen:1000 RX bytes:7664 (7.6 KB) TX bytes:7664 (7.6 KB) ppp0 Link encap:Point_to_Point Protocol inet addr 10.212.83.249 P-t-P:10.64.64.64 Mask:255.255.255.255 UP POINTOPOINT RUNNING NOARP MULTICAST MTU:1500 Metric:1 RX packets:6 errors:0 dropped:0 overruns:0 frame:0 TX packets:6 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:3 RX bytes:240 (240.0 B) TX bytes:182 (182.0 B)
- Apply ping command to check network

ping www.baidu.com

```
root@polyhex:/etc/ppp/peers# ping baidu.com
PING baidu.com (220.181.38.251) 56(84) bytes of data.
64 bytes from 220.181.38.251: icmp_seq=1 ttl=49 time=91.8 ms
64 bytes from 220.181.38.251: icmp_seq=2 ttl=49 time=79.6 ms
64 bytes from 220.181.38.251: icmp_seq=3 ttl=49 time=78.5 ms
64 bytes from 220.181.38.251: icmp_seq=4 ttl=49 time=78.5 ms
64 bytes from 220.181.38.251: icmp_seq=5 ttl=49 time=78.6 ms
64 bytes from 220.181.38.251: icmp_seq=6 ttl=49 time=78.8 ms
64 bytes from 220.181.38.251: icmp_seq=7 ttl=49 time=78.8 ms
64 bytes from 220.181.38.251: icmp_seq=7 ttl=49 time=78.7 ms
a64 bytes from 220.181.38.251: icmp_seq=9 ttl=49 time=78.7 ms
a64 bytes from 220.181.38.251: icmp_seq=9 ttl=49 time=79.9 ms
64 bytes from 220.181.38.251: icmp_seq=11 ttl=49 time=76.3 ms
64 bytes from 220.181.38.251: icmp_seq=12 ttl=49 time=94.5 ms
```


4.5. Verification of RS485/RS232/RS422/CAN

NOTE

The default configuration is an RS485 interface. RS485, RS232, RS422 and CAN on the

same socket, only one can be used at the same time.

Open the CuteCom tool, the serial port parameters are set as follows.

Table 11	Parameter	set for	cutecom tool
----------	-----------	---------	--------------

Parameter	Value
Baud rate	115200
Data bits	8
Stop bits	1
Parity	None
Flow Control	None

4.5.1. 4 x RS232

Connect Pin3 of COM1 to the sending end Pin5 of COM3, Pin5 to the receiving end Pin3 of COM3, and Pin9 to the ground terminal Pin9 of COM3. The wiring is shown in the following figure.

Figure 21

- Run the CuteCom tool, set the Device to /dev/ttymxc0, set other parameters as shown in the table, click Open device.
- 2. Open another CuteCom window, set the Device to /dev/ttymxc2 and click Open device.
- 3. Send and receive data via CuteCom. Enter the test string in the CuteCom input box, press Enter to send, you can see that another CuteCom receiving box receives the same

message, indicating that the communication is successful, and the result is as follows:

		CuteCom			- + >
Open device	Device:	/dev/ttymxc0	Parity:	None	
Cl <u>o</u> se device	Baud rate:	115200	🗧 Handshake: 🔲	Software 🔲	Hardware
About	Data bits:	8	🗯 Open for: 🛛 🞯	Reading 📝	Writing
Quit	Stop bits:	1	🛊 📝 Apply setting	gs when openir	ng
<u>C</u> lear	lex output	Log to: ‡ /root/c	utecom.log		
send to usb-rs232 send from rs232 Input:	2				
Send file Pla	in ‡		LF line end	Char delay: 1	ms 🗘

Figure 22

		CuteCom					ł
Open device	Device:	/dev/ttymxc2	v	Parity:	Nor	ie	1
Close device	Baud rate:	115200	-	Handshake: 📗	Software	🔲 Hardw	are
About	Data bits:	8	* *	Open for: 🛛 📓	🛿 Reading	🐷 Writing]
Quit	Stop bits:	1	*	📝 Apply sett	ings when o	pening	
<u>C</u> lear	ex output	Log to: 🗘 /root,	/cutec	om.log]	
<u>C</u> lear <u>F</u>	lex output	Log to:	/cutec	om.log] [
<u>C</u> lear <u>F</u> send from com3	lex output	Log to: 🛟 /root,	/cutec	om.log]	

Figure 23

4.5.2. RS485/RS232/RS422/2 x CAN (RS485 by default)

≻ RS485

Connect Pin2 of RS485 to B of USB-RS485, Pin3 to A of USB-R485, USB-R485 is connected to USB interface on the PC. The wiring is shown in the following figure.

- 1. Run the CuteCom tool, set the Device to /dev/ttymxc4, click Open device.
- Open MobaXterm tool on PC, click Sessions > New Session, click Serial in the Session settings window, set Serial port and other parameters in the Advanced Serial settings window, click OK. as follows:

	49	e .	X		vĉ	3	8	N	3	>	3	X		
SH	Telnet	Rsh	Xdmcp	RDP	VNC	FTP	SFTP	Serial	File	Shell	Browser	Mosh	Aws S3	WSL
ning: y can st se su	you have rea tart a new s upport Mob	ached the ession bu aXterm by	maximum t it will not / subscrib	number of be autom ing to the	of saved se atically sav Professio	ssions fo ed. nal editio	r the perso on here: ht	nal edition tps://moba	of MobaX	term. obatek.ne	t			
♥ Ba	isic <mark>Serial</mark> s	settings		10.1775 10.00 ¥ 107										
	Serial port	* COM1	4 (USB-S		:H340 (CO	M14))	~	\$	Speed (bp	os) * 1152	200 ~			
		Seria	l engine:	PuTTY	(allows n	nanual C	OM port s	etting)			~			
		1	Data bits	8	~									
		3	Stop bits	1	~	If yo	ou need to t	ransfer file	s (e.g. rou	ter aXterm				
			Parity	None	\sim	em	bedded TF	TP server						
		Flo	w control	None	\sim	"Se	ervers" wi	ndow>	> TETP	server			200	
			O Reset	defaults	1									
		Exect	ute macro	at sessi	on start:	<none></none>		~						

Figure 25

3. Enter the test string in the MobaXterm tool on PC, press Enter to send, you can receive the same message in the receive box of the CuteCom tool; enter the test string in the input box of the CuteCom tool, press Enter to send, you can receive the same message in the MobaXterm tool on the PC, indicating that the communication is successful, and the result is as follows:

Figure 26

		CuteCom				-	+ >
Open device	Device:	/dev/ttymxc4		Parity:	Non	e	-
Close device	Baud rate:	115200	÷	Handshake: 🗌	Software	🔲 Hardv	vare
About	Data bits:	8	4 7	Open for:	j Reading	🖉 Writin	9
Quit	Stop bits:	1	4. 17	📝 Apply setti	ngs when op	pening	
<u>C</u> lear	Hex output	Log to: ‡]/root	/cute	com.log			
rs485 send from RS485 send to usb-rs485 RS485 TEST	5						

Figure 27

➢ RS232

Connect Pin3 of RS232 to the sending end of USB-RS232, Pin5 to the receiving end of USB-R232, and Pin1 to the ground terminal of USB-RS232, USB-R232 is connected to USB interface on the PC. The wiring is shown in the following figure.

Repeat steps 1~3 of RS485 verification, the same information is sent and received, it indicates the communication is successful, and the result is as follows:

		CuteCom			- +
Open device	Device:	/dev/ttymxc0	▼ Parity:	Non	ie
Close device	Baud rate:	115200	🗧 Handshake:	Software	🔲 Hardwa
About	Data bits:	8	🔅 Open for:	📝 Reading	🕼 Writing
Quit	Stop bits:	1	🛊 📝 Apply se	ttings when o	pening
<u>C</u> lear <u></u>	Hex output	Log to:	/cutecom.log]
<u>Clear</u> <u></u> rey test RS232	Hex output	Log to: 🛟 /root,	/cutecom.log]
<u>Clear</u> <u></u> rey test R5232 send to usb-rs232 test rs232	<u>H</u> ex output	Log to: 🛟 /root	/cutecom.log]
Clear E rey test RS232 send to usb-rs232 test rs232	Hex output	Log to: (/root,	/cutecom.log]

Figure 29

≻ RS422

Connect Pin7 of RS422 to the sending end T/R- of the adapter, Pin5 to the sending end T/R+ of the adapter, Pin1 to the receiving end R- of the adapter, Pin3 to the receiving end R+ of the adapter, Pin9 to the ground terminal of the adapter, and the adapter to USB-R232 connected to USB interface of the PC. The wiring is shown in the following figure.

Repeat steps 1~3 of RS485 verification, the same information is sent and received, it indicates the communication is successful.

For example, if you type "send to iMX6Se from PC" in the MobaXterm tool, you can see the

same message in the receive box of the CuteCom tool; if you type "send to PC from iMX6Se" in the input box of the CuteCom tool, and the MobaXterm tool shows the same content, which proves that the communication is successful, and the result is as follows:

		CuteCom				- + ×
Open device	Device:	/dev/ttymxc4		Parity:	None	¢
Cl <u>o</u> se device	Baud rate:	115200	*	Handshake:	Software	Hardware
About	Data bits:	8	*	Open for:	🗑 Reading	🗑 Writing
Quit	Stop bits:	1	Å. V	🗑 Apply setti	ngs when open	ing
Clear Hex output	Log to:	¢ /root/cutecom.log]

> CAN

Connect Pin2 to Pin5, and Pin3 to Pin6 of the CAN bus interface (that is, H to H, and L to L of two CANs). The wiring is shown in the following figure.

2×CAN

Figure 33

• CAN1 sends data, CAN0 receives data

Open a Terminal, configure CAN0 to receive, and CAN1 to send.

ifconfig can0 downip link set can0 type can bitrate 500000ifconfig can0 upifconfig can1 downip link set can1 type can bitrate 500000ifconfig can1 upcandump can0#(can0 backend receive data)cansend can1 123#1122334455667788#(can1 send data)

• CAN1 receives data, CAN0 sends data

In the Terminal, switch can1 to receive and can0 to send.

candump can1	#(can1 backend receive data)
cansend can0 123#1122334455667788	#(can0 send data)
<pre>root@polyhex:~# ifconfig can0 down root@polyhex:~# if Link set can0 type can bitrate 500000 root@polyhex:~# ifconfig can1 down root@polyhex:~# ifconfig can1 up root@polyhex:~# ifconfig can1 up root@polyhex:~# cansend can1 123#1122334455667788 root@polyhex:~# cansend can1 123#1122334455667788 root@polyhex:~# cansend can1 123#1122334455667788 root@polyhex:~# cansend can0 123#1122334455667788 root@polyhex:~#</pre>	<pre>* Documentation: <u>https://help.ubuntu.com/</u> 366 packages can be updated. 317 updates are security updates. New release '18.04.6 LTS' available. Run 'do-release-upgrade' to upgrade to it. Last login: Thu Jul 7 00:32:07 2022 root@polyhex:~# candump can0 can0 123 [8] 11 22 33 44 55 66 77 88 can0 123 [8] 11 22 33 44 55 66 77 88</pre>

4.6. Verification of GPIO

GPIO output:

1. Enter the gpio-1 control directory

cd /sys/class/leds/gpio-1

2. GPIO output low

echo 0 > brightness

3. GPIO output high

echo 1 > brightness

Other GPIOs are verified in the same way, and the GPIO ports are as follows:

```
root@polyhex:/# cd /sys/class/leds/
root@polyhex:/sys/class/leds# ls
gpio-1 gpio-3 gpio-D17 gpio-D30 gpio-spi-ss0 input2::scrolllock
gpio-16 gpio-4 gpio-D18 gpio-spi-miso gpio-spi-ss1 mmc0::
gpio-19 gpio-5 gpio-D21 gpio-spi-mosi input2::capslock mmc2::
gpio-2 gpio-6 gpio-D22 gpio-spi-sck input2::numlock mmc3::
```

4.7. Verification of RTC

1. Check the current system time:

date **cot@polyhex[07:17:03]:~** date ri May 5 07:17:07 UTC 2023

2. Check the current RTC time:

hwclock

```
root@polyhex[07:17:07]:~
$ sudo hwclock
Fri May 5 07:17:24 2023 .363071 seconds
```

3. Modify the current system time:

date -s "2023-5-5 15:18:00"

root@polyhex[07:17:24]:~
\$ sudo date -s "2023-5-5 15:18:00"
Fri May 5 15:18:00 UTC 2023

4. Write system time to RTC:

hwclock -w

hwclock #Check the RTC time

root@polyhex[15:18:04]:~
\$ sudo hwclock -w
root@polyhex[15:18:24]:~
\$ hwclock
Fri May 5 15:18:30 2023 .593077 seconds